Large prof kieron burke

Machine-learning of density functionals for applications in molecules and materials

Prof. Kieron Burke

Recorded 20 February 2018 in Lausanne, Vaud, Switzerland

Event: MARVEL NCCR - MARVEL Distinguished Lectures, Seminars and Tutorials - 2015 onwards


This lecture is designed to be accessible to a wide variety of backgrounds.

In the first part, I will briefly review density functional theory and why it is important to many branches of modern physical science. I will also review machine learning and its recent applications to molecules and materials.

In the second half, I will show how, in collaboration with computer scientists at TU Berlin, we have used a specific type of machine-learning, called kernel ridge regression, to find more accurate and powerful approximate density functionals than any made by humans.

For more background, see here.

Watched 441 times.