Large giustino pic 600x916 halfres

Electron-phonon physics from first principles

Prof. Feliciano Giustino

Recorded 05 December 2018 in Lausanne, Vaud, Switzerland

Event: MARVEL NCCR - MARVEL Distinguished Lectures, Seminars and Tutorials - 2015 onwards


Electron-phonon interactions (EPIs) are ubiquitous in condensed matter and materials physics. For example EPIs play a central role in the electrical resistivity of metals, the carrier mobility of semiconductors, the pairing mechanism of conventional superconductors, and the optical properties of indirect-gap materials. More fundamentally, the EPI is the simplest realization of the interaction between fermion and boson fields, arguably one of the pillars of many-particle physics and quantum electrodynamics. The EPI has been studied for almost a century, however only during the last two decades predictive, non-empirical calculations have become possible. In this talk I will outline the theoretical and computational framework underlying modern electron-phonon calculations from first principles, and illustrate recent progress in this area by discussing representative work from our group. In particular I will touch upon our recent investigations of polarons in the angle-resolved photoelectron spectra of transition metal oxides [1,2], the superconducting pairing mechanism in transition metal dichalcogenides [3], non-adiabatic Kohn anomalies in the inelastic X-ray scattering spectra of doped semiconductors [4], and the phonon-induced renormalization of carrier effective masses in halide perovskites [5]. I will conclude by discussing opportunities for future work, and the key challenges for advancing theoretical and computational research on electron-phonon physics [5].

[1] C. Verdi et al., Nat. Commun. 8, 15769 (2017).
[2] J. M. Riley et al., Nat. Commun. 9, 2305 (2018).
[3] C. Heil et al., Phys. Rev. Lett., 119, 087003 (2017).
[4] F. Caruso et al., Phys. Rev. Lett. 119, 017001 (2017).
[5] M. Schlipdf et al., Phys. Rev. Lett. 121, 086402 (2018).

Watched 5059 times.